=head1 NAME PPIx::Regexp::Token::Literal - Represent a literal character =head1 SYNOPSIS use PPIx::Regexp::Dumper; PPIx::Regexp::Dumper->new( 'qr{foo}smx' ) ->print(); =head1 INHERITANCE C is a L. C has no descendants. =head1 DESCRIPTION This class represents a literal character, no matter how specified. =head1 METHODS This class provides the following public methods. Methods not documented here are private, and unsupported in the sense that the author reserves the right to change or remove them without notice. =cut package PPIx::Regexp::Token::Literal; use strict; use warnings; use base qw{ PPIx::Regexp::Token }; use PPIx::Regexp::Constant qw{ COOKIE_CLASS COOKIE_REGEX_SET LITERAL_LEFT_CURLY_ALLOWED LITERAL_LEFT_CURLY_REMOVED_PHASE_1 LITERAL_LEFT_CURLY_REMOVED_PHASE_2 LITERAL_LEFT_CURLY_REMOVED_PHASE_3 MINIMUM_PERL MSG_PROHIBITED_BY_STRICT TOKEN_UNKNOWN @CARP_NOT }; use PPIx::Regexp::Util qw{ :width_one }; our $VERSION = '0.088'; sub __new { my ( $class, $content, %arg ) = @_; my $self = $class->SUPER::__new( $content, %arg ) or return; defined $arg{ordinal} and $self->{ordinal} = $arg{ordinal}; return $self; } # Return true if the token can be quantified, and false otherwise # sub can_be_quantified { return }; sub explain { return 'Literal character'; } =head2 is_matcher This method returns a true value because a literal matches itself. =cut sub is_matcher { return 1; } sub perl_version_introduced { my ( $self ) = @_; exists $self->{perl_version_introduced} and return $self->{perl_version_introduced}; my $content = $self->content(); my $main = $self->main_structure(); $main and $content =~ m/ \A \\ N \{ /smx and not $main->interpolates() and return ( $self->{perl_version_introduced} = '5.029010' ); $content =~ m/ \A \\ o /smx and return ( $self->{perl_version_introduced} = '5.013003' ); $content =~ m/ \A \\ N [{] U [+] /smx and return ( $self->{perl_version_introduced} = '5.008' ); $content =~ m/ \A \\ x [{] /smx # } and return ( $self->{perl_version_introduced} = '5.006' ); $content =~ m/ \A \\ N /smx and return ( $self->{perl_version_introduced} = '5.006001' ); return ( $self->{perl_version_introduced} = MINIMUM_PERL ); } { my %removed = ( q<{> => sub { my ( $self ) = @_; my $prev; if ( $prev = $self->sprevious_sibling() ) { # When an unescaped left curly follows something else in # the same structure, the logic on whether it is allowed # lives, for better or worse, on the sibling. return $prev->__following_literal_left_curly_disallowed_in(); } elsif ( $prev = $self->sprevious_element() ) { # Perl 5.27.8 deprecated unescaped literal left curlys # after a left paren that introduces a group. Therefore # the left curly has no previous sibling. But the curly # is still legal at the beginning of a regex, even one # delimited by parens, so we can not return when we find # a PPIx::Regexp::Token::Delimiter, which is a subclass # of PPIx::Regexp::Token::Structure. $prev->isa( 'PPIx::Regexp::Token::Structure' ) and q<(> eq $prev->content() and not $prev->isa( 'PPIx::Regexp::Token::Delimiter' ) and return LITERAL_LEFT_CURLY_REMOVED_PHASE_3; } # When this mess started, the idea was to always allow # unescaped literal left curlies that started a regex or a # group return LITERAL_LEFT_CURLY_ALLOWED; }, ); sub perl_version_removed { my ( $self ) = @_; exists $self->{perl_version_removed} and return $self->{perl_version_removed}; my $code; return ( $self->{perl_version_removed} = ( $code = $removed{$self->content()} ) ? scalar $code->( $self ) : undef ); } } # Some characters may or may not be literals depending on whether we are # inside a character class. The following hash identifies those # characters and says what we should return when outside (index 0) or # inside (index 1) a character class, as judged by the presence of the # relevant cookie. my %double_agent = ( '.' => [ undef, 1 ], '*' => [ undef, 1 ], '?' => [ undef, 1 ], '+' => [ undef, 1 ], '-' => [ 1, undef ], '|' => [ undef, 1 ], ); # These are the characters that other external tokenizers need to see, # or at least that we need to take a closer look at. All others can be # unconditionally made into single-character literals. my %extra_ordinary = map { $_ => 1 } split qr{}smx, '$@*+?.\\(){}[]^|-#'; # $ -> Token::Interpolation, Token::Assertion # @ -> Token::Interpolation # * -> Token::Quantifier # + ? -> Token::Quantifier, Token::Greediness # . -> Token::CharClass::Simple # \ -> Token::Control, Token::CharClass::Simple, Token::Assertion, # Token::Backreference # ( ) { } [ ] -> Token::Structure # ^ -> Token::Assertion # | - -> Token::Operator my %regex_set_operator = map { $_ => 1 } qw{ & + | - ^ ! }; # The regex for the extended white space available under regex sets in # Perl 5.17.8 and in general in perl 5.17.9. I have been unable to get # this to work under Perl 5.6.2, so for that we fall back to ASCII white # space. The stringy eval is because I have been unable to get # satisfaction out of either interpolated characters (in general) or # eval-ed "\N{U+...}" (under 5.6.2) or \x{...} (ditto). # # See PPIx::Regexp::Structure::RegexSet for the documentation of this # mess. # my $white_space_re = $] >= 5.008 ? # 'qr< \\A [\\s\\N{U+0085}\\N{U+200E}\\N{U+200F}\\N{U+2028}\\N{U+2029}]+ >smx' : # 'qr< \\A \\s+ >smx'; # # RT #91798 # The above turns out to be wrong, because \s matches too many # characters. We need the following to get the right match. Note that # \cK was added experimentally in 5.17.0 and made it into 5.18. The \N{} # characters were NOT added (as I originally thought) but were simply # made characters that generated warnings when escaped, in preparation # for adding them. When they actually get added, I will have to add back # the trinary operator. Sigh. # my $white_space_re = 'qr< \A [\t\n\cK\f\r ] >smx'; # # The extended white space characters came back in Perl 5.21.1. my $white_space_re = $] >= 5.008 ? 'qr< \\A [\\t\\n\\cK\\f\\r \\N{U+0085}\\N{U+200E}\\N{U+200F}\\N{U+2028}\\N{U+2029}]+ >smx' : 'qr< \\A [\\t\\n\\cK\\f\\r ]+ >smx'; $white_space_re = eval $white_space_re; ## no critic (ProhibitStringyEval) my %regex_pass_on = map { $_ => 1 } qw{ [ ] ( ) $ \ }; sub __PPIX_TOKENIZER__regexp { my ( undef, $tokenizer, $character ) = @_; # Invocant, $char_type unused if ( $tokenizer->cookie( COOKIE_REGEX_SET ) ) { # If we're inside a regex set no literals are allowed, but not # all characters that get here are seen as literals. $regex_set_operator{$character} and return $tokenizer->make_token( length $character, 'PPIx::Regexp::Token::Operator' ); my $accept; # As of 5.23.4, only space and horizontal tab are legal white # space inside a bracketed class inside an extended character # class $accept = $tokenizer->find_regexp( $tokenizer->cookie( COOKIE_CLASS ) ? qr{ \A [ \t] }smx : $white_space_re ) and return $tokenizer->make_token( $accept, 'PPIx::Regexp::Token::Whitespace' ); $accept = _escaped( $tokenizer, $character ) and return $accept; $regex_pass_on{$character} and return; # At this point we have a single character which is poised to be # interpreted as a literal. These are not legal in a regex set # except when also in a bracketed class. return $tokenizer->cookie( COOKIE_CLASS ) ? length $character : $tokenizer->make_token( length $character, TOKEN_UNKNOWN, { error => 'Literal not valid in Regex set', }, ); } else { # Otherwise handle the characters that may or may not be # literals depending on whether or not we are in a character # class. if ( my $class = $double_agent{$character} ) { my $inx = $tokenizer->cookie( COOKIE_CLASS ) ? 1 : 0; return $class->[$inx]; } } # If /x is in effect _and_ we are not inside a character class, \s # is whitespace, and '#' introduces a comment. Otherwise they are # both literals. if ( $tokenizer->modifier( 'x*' ) && ! $tokenizer->cookie( COOKIE_CLASS ) ) { my $accept; $accept = $tokenizer->find_regexp( $white_space_re ) and return $tokenizer->make_token( $accept, 'PPIx::Regexp::Token::Whitespace' ); $accept = $tokenizer->find_regexp( qr{ \A \# [^\n]* (?: \n | \z) }smx ) and return $tokenizer->make_token( $accept, 'PPIx::Regexp::Token::Comment' ); } elsif ( $tokenizer->modifier( 'xx' ) && $tokenizer->cookie( COOKIE_CLASS ) ) { my $accept; $accept = $tokenizer->find_regexp( qr{ \A [ \t] }smx ) and return $tokenizer->make_token( $accept, 'PPIx::Regexp::Token::Whitespace', { perl_version_introduced => '5.025009' }, ); } else { ( $character eq '#' || $character =~ m/ \A \s \z /smx ) and return 1; } my $accept; $accept = _escaped( $tokenizer, $character ) and return $accept; # All other characters which are not extra ordinary get accepted. $extra_ordinary{$character} or return 1; return; } =begin comment The following is from perlop: The character following "\c" is mapped to some other character by converting letters to upper case and then (on ASCII systems) by inverting the 7th bit (0x40). The most interesting range is from '@' to '_' (0x40 through 0x5F), resulting in a control character from 0x00 through 0x1F. A '?' maps to the DEL character. On EBCDIC systems only '@', the letters, '[', '\', ']', '^', '_' and '?' will work, resulting in 0x00 through 0x1F and 0x7F. =end comment =cut # Recognize all the escaped constructions that generate literal # characters in one gigantic regexp. Technically \1.. through \7.. are # octal literals too, but we can not disambiguate these from back # references until we know how many there are. So the lexer gets another # dirty job. { my %special = ( '\\N{}' => sub { my ( $tokenizer, $accept ) = @_; =begin comment $tokenizer->strict() or return $tokenizer->make_token( $accept, 'PPIx::Regexp::Token::NoOp', { perl_version_removed => '5.027001', }, ); return $tokenizer->make_token( $accept, TOKEN_UNKNOWN, { error => join( ' ', 'Empty Unicode character name', MSG_PROHIBITED_BY_STRICT ), perl_version_introduced => '5.023008', perl_version_removed => '5.027001', }, ); =end comment =cut return $tokenizer->make_token( $accept, TOKEN_UNKNOWN, { error => 'Empty Unicode character name', perl_version_introduced => '5.023008', perl_version_removed => '5.027001', }, ); }, '\\o{}' => sub { my ( $tokenizer, $accept ) = @_; return $tokenizer->make_token( $accept, TOKEN_UNKNOWN, { error => q, }, ); }, '\\x{}' => sub { my ( $tokenizer, $accept ) = @_; $tokenizer->strict() and return $tokenizer->make_token( $accept, TOKEN_UNKNOWN, { error => q, }, ); return $accept; }, ); sub _escaped { my ( $tokenizer, $character ) = @_; $character eq '\\' or return; if ( my $accept = $tokenizer->find_regexp( # { qr< \A \\ ( [ox] ) [{] ( [^}]* ) [}] >smx ) ) { my $match = $tokenizer->match(); my $code; $code = $special{$match} and return $code->( $tokenizer, $accept ); my ( $kind, $value ) = $tokenizer->capture(); my $invalid = { o => qr<[^0-7]>smx, x => qr<[[:^xdigit:]]>smx, }->{$kind}; $value =~ m/ $invalid /smxg # /g for pos() or return $accept; $tokenizer->strict() and return $tokenizer->make_token( $accept, TOKEN_UNKNOWN, { error => sprintf( 'Non-%s character in \\%s{...}', { o => 'octal', x => 'hex', }->{$kind}, $kind, ), }, ); return $tokenizer->make_token( $accept, __PACKAGE__, { ordinal => { o => sub { oct $_[0] }, x => sub { hex $_[0] }, }->{$kind}->( substr( $value, 0, pos $value ) || 0 ), }, ); } if ( my $accept = $tokenizer->find_regexp( qr< \A \\ (?: [^\w\s] | # delimiters/metas [tnrfae] | # C-style escapes 0 [01234567]{0,2} | # octal # [01234567]{1,3} | # made from backref by lexer c [][\@[:alpha:]\\^_?] | # control characters ## x (?: \{ [[:xdigit:]]* \} | [[:xdigit:]]{0,2} ) | # hex ## o [{] [01234567]+ [}] | # octal as of 5.13.3 x [[:xdigit:]]{0,2} | # hex - brackets handled above ## N (?: \{ (?: [[:alpha:]] [\w\s:()-]* | # must begin w/ alpha ## U [+] [[:xdigit:]]+ ) \} ) | # unicode N (?: [{] (?= [^0-9] ) [^\}]* [}] ) # unicode ) >smx ) ) { my $match = $tokenizer->match(); my $code; $code = $special{$match} and return $code->( $tokenizer, $accept ); return $accept; } return; } } =head2 ordinal print 'The ordinal of ', $token->content(), ' is ', $token->ordinal(), "\n"; This method returns the ordinal of the literal if it can figure it out. It is analogous to the C built-in. It will not attempt to determine the ordinal of a unicode name (C<\N{...}>) unless L has been loaded, and supports the L)> function. Instead, it will return C. Users of Perl 5.6.2 and older may be out of luck here. Unicode code points (e.g. C<\N{U+abcd}>) should work independently of L, and just return the value of C. It will never attempt to return the ordinal of an octet (C<\C{...}>) because I don't understand the syntax. =cut { my %escapes = ( '\\t' => ord "\t", '\\n' => ord "\n", '\\r' => ord "\r", '\\f' => ord "\f", '\\a' => ord "\a", '\\b' => ord "\b", '\\e' => ord "\e", '\\c?' => ord "\c?", '\\c@' => ord "\c@", '\\cA' => ord "\cA", '\\ca' => ord "\cA", '\\cB' => ord "\cB", '\\cb' => ord "\cB", '\\cC' => ord "\cC", '\\cc' => ord "\cC", '\\cD' => ord "\cD", '\\cd' => ord "\cD", '\\cE' => ord "\cE", '\\ce' => ord "\cE", '\\cF' => ord "\cF", '\\cf' => ord "\cF", '\\cG' => ord "\cG", '\\cg' => ord "\cG", '\\cH' => ord "\cH", '\\ch' => ord "\cH", '\\cI' => ord "\cI", '\\ci' => ord "\cI", '\\cJ' => ord "\cJ", '\\cj' => ord "\cJ", '\\cK' => ord "\cK", '\\ck' => ord "\cK", '\\cL' => ord "\cL", '\\cl' => ord "\cL", '\\cM' => ord "\cM", '\\cm' => ord "\cM", '\\cN' => ord "\cN", '\\cn' => ord "\cN", '\\cO' => ord "\cO", '\\co' => ord "\cO", '\\cP' => ord "\cP", '\\cp' => ord "\cP", '\\cQ' => ord "\cQ", '\\cq' => ord "\cQ", '\\cR' => ord "\cR", '\\cr' => ord "\cR", '\\cS' => ord "\cS", '\\cs' => ord "\cS", '\\cT' => ord "\cT", '\\ct' => ord "\cT", '\\cU' => ord "\cU", '\\cu' => ord "\cU", '\\cV' => ord "\cV", '\\cv' => ord "\cV", '\\cW' => ord "\cW", '\\cw' => ord "\cW", '\\cX' => ord "\cX", '\\cx' => ord "\cX", '\\cY' => ord "\cY", '\\cy' => ord "\cY", '\\cZ' => ord "\cZ", '\\cz' => ord "\cZ", '\\c[' => ord "\c[", '\\c\\\\' => ord "\c\\", # " # Get Vim's head straight. '\\c]' => ord "\c]", '\\c^' => ord "\c^", '\\c_' => ord "\c_", ); sub ordinal { my ( $self ) = @_; exists $self->{ordinal} and return $self->{ordinal}; return ( $self->{ordinal} = $self->_ordinal() ); } my %octal = map {; "$_" => 1 } ( 0 .. 7 ); sub _ordinal { my ( $self ) = @_; my $content = $self->content(); $content =~ m/ \A \\ /smx or return ord $content; exists $escapes{$content} and return $escapes{$content}; my $indicator = substr $content, 1, 1; $octal{$indicator} and return oct substr $content, 1; if ( $indicator eq 'x' ) { $content =~ m/ \A \\ x \{ ( [[:xdigit:]]* ) /smx and return hex "0$1"; $content =~ m/ \A \\ x ( [[:xdigit:]]{0,2} ) \z /smx and return hex $1; return; } if ( $indicator eq 'o' ) { $content =~ m/ \A \\ o [{] ( [01234567]* ) \z /smx and return oct "0$1"; return; # Shouldn't happen, but ... } if ( $indicator eq 'N' ) { $content =~ m/ \A \\ N \{ U [+] ( [[:xdigit:]]+ ) \} \z /smx and return hex $1; $content =~ m/ \A \\ N [{] ( .+ ) [}] \z /smx and return ( _have_charnames_vianame() ? charnames::vianame( $1 ) : undef ); return; # Shouldn't happen, but ... } return ord $indicator; } } sub __following_literal_left_curly_disallowed_in { return LITERAL_LEFT_CURLY_REMOVED_PHASE_2; } { my $have_charnames_vianame; sub _have_charnames_vianame { defined $have_charnames_vianame and return $have_charnames_vianame; return ( $have_charnames_vianame = charnames->can( 'vianame' ) ? 1 : 0 ); } } sub __perl_requirements_setup { my ( $self ) = @_; my $prev; q<{> eq $self->content() # } and $prev = $self->sprevious_sibling() and $prev->isa( 'PPIx::Regexp::Token::Literal' ) or return $self->SUPER::__perl_requirements_setup(); return ( { introduced => MINIMUM_PERL, removed => LITERAL_LEFT_CURLY_REMOVED_PHASE_1, }, # TODO the following will be needed if this construction is # re-allowed in 5.26.1: # { # introduced => '5.026001', # removed => '6.027000', # }, { introduced => '5.027001', removed => LITERAL_LEFT_CURLY_REMOVED_PHASE_2, }, ); } *__PPIX_TOKENIZER__repl = \&__PPIX_TOKENIZER__regexp; 1; __END__ =head1 SUPPORT Support is by the author. Please file bug reports at L, L, or in electronic mail to the author. =head1 AUTHOR Thomas R. Wyant, III F =head1 COPYRIGHT AND LICENSE Copyright (C) 2009-2023 by Thomas R. Wyant, III This program is free software; you can redistribute it and/or modify it under the same terms as Perl 5.10.0. For more details, see the full text of the licenses in the directory LICENSES. This program is distributed in the hope that it will be useful, but without any warranty; without even the implied warranty of merchantability or fitness for a particular purpose. =cut # ex: set textwidth=72 :